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Introduction

Finite-element wodels are used extensively by the rotoreraft industry for determining the vibratory
characteristics of helicoprer aivframes. These airframe models are tvpicallv large. usually containing several
thousand finire elements. and their definition involves considerable effort. Results obtained by using these
models nsnadly do not correlate well with experimental data. particularly at the higher frequencies that are
pear the predominant rotor excitation freguencies (refs. 1 through 4). Although there are several possible
reasons for the lack of correlation. one that has recently attracted attention is the accuracy of the elements
themselves.

Most finite-element codes in use todav cmplov what are commonly referred to as h-version elements. An
h-version element uses fixed-order shape funetions to relate the diserete nodal displacements of the element
ro the continnons displacements within the element. Mesh size normally controls the accuracy of the resnlts
obtained using h-version elements, As the nnbes of elemenis s increased. the mesh size decreases and the
Lo tendd G conviige, Teste Dor convergenee usnally involve solving a series of problems with successively
e hm '« meshes until convergence is indicated. Sne h convergence checks are often used in studies which employ
sitll models To check the finire-element model of a large structure (such as an airframe) for convergence hy

mesh retinement would be a formidable task not likely to be done in practice. So-called p-version elements that
have recently cained attention have the potential for both improving accuracy and simplifving convergence
('}l(‘('kﬁ‘ ‘

The p-version element is different from the h-version element in that the user may select the order of the
shape function defining the displacement behavior of the element. In general. the higher the order of the shape
function. the more accurate the results. Increasing the order of the shape functions s analogous to inereasing
the mumber of elements for a comparable h-version model.  This feature becomes a distinet advantage in
convergence checks of large finite-element models because raising the order of the shape functions would be
mueh easier than increasing the munber of elements in the data input file.

The advantage of using p-version elements is lost if the element does not closely approximate the geometry
of the structure being modeled. For example. a uniform p-version beam element would pose no advantage
over a uniform h-version element in either accuracy or ease of use in modeling a tapered beam. However,
4 p-version beam element whose cross-sectional dimensions vary linearly with length would allow for a mwore
accurate representation of a tapered beam than could be achieved with a uniform beam element. Because
many substructures ina typical airframe consist of beams whose crass sections vary along their length. the use
of p-version elements offers an advantage over h-version elements only if the p-version elements can accurately
model the phyvsical striucture without resorting to excessive mesh refincinent.

The Langley Research Center has underway a research structaral dynamics program which is investigating
finite-elerment modeling techniques for helicopter vibrations analyses. Tiis activity has identified the need
for a small research code containing a limited library of p-version beam and shell elements. To meet the
requirements of a research tool. these clements must be well documented. easily modified. and tailored to
the needs of airframe vibrations analvses. Work has been initiated at Langley to develop such a code. Tnitial
attention is being given to the heam element. A survey of the finite-element literature revealed no commercially
available codes with p-version beam elements and only a few research codes having such elements. Noue of the
fatter codes appear to be suitable for airframe vibrations analyses work. However. there has been significant
work done in the area of tapered h-version beam elements which is relevant to the beam element that is the S

siubject of this paper. Pertinent work in this area is stunmarized.
Tapered beam finite elements based on cubic polynomial shape functions have been under investigation

for many vears trefs. 5 and 6). Higher order. tapered beam elements have also bheen developed. Thomas and 77
Dokumaci (ref. T) presented two tapered beam elen. ots nsing quintic polyoomials. One beam element had 7]
ten inte A noeea, w Leicas (he other beam element defined the second derivative at eachi end of the beam as - —=
a degree of freedom. Interelemnent continuity was then enforeed for displacement and the first two derivatives, T
which formed a C2type element. A tapered beam element using seventh-degree polyvnomial shape functions ———

was derived by To in reference 8. Each node had four degrees of freedom (displacement and the first three
derivatives) on which interelement continuity was imposed. It should be pointed out that these higher order dos
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eletents are not p-version elements becanuse the order of the shape functions was fixed when the element was
derived. In another paper. To (ref. 9) developed a tapered beam element incorporating shear deformation and
rotary inertia but based the element formulation on cubic shape functions. More recently. a tapered p-version
beam element was developed by Hodges., Hopkins, Kunz., and Hinnant (ref. 10) specifically for modeling rotor
blades. To correctly model a spinning rotor blade. the element includes the nonlinear effects of large nodal
displacements and rotations, acrodyuamics, and inertial rotation. Such a complex element is not needed for
modeling airframe structures. As a practical matter. elements used for the analysis of airframes should be
relatively sitmiple because of the large number of elements normally required to model the structure adequately.

The objective of this paper is to present the derivation of a tapered. p-version beam element for use in
dvnamic analvses of general structural systems. This element features hierarchical shape functions which allow
higher order analvses to use element matrices established for lower order analyses. Appropriate orthogonal
relations for the shape functions are emploved to avoid ill-conditioned matrices and reduce the number of
nonzero terms. Element watrices are explicitly formed. thus eliminating the need for numerical quadrature
resulting in a simpler implementation and a reduction in roundoft error.

Symbols

A cross-sectional area

", coeflicients of polynomial representing cross-sectional property
E modulus of elasticity
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ith axial. laieral bending. and rorsional frequency.
respectivelv, Hz

shear modulus

nuber of internal degrees of freedom

area moment of inertia about X-. Y-, and Z-axis. respectively
torsional stiffness constant

stiffniess matrix

external stiffiess submatrix

external-internal stiffness coupling submatrice associated with w.
. w. and 8. respectively

internal stiffness submatrice associated with w. v, u'. and @,
respectively

length of beam
mass matrix
external mass submatrix

external-internal mass coupling submatrice associated with w. v,
w. and #. respectively

internal mass submatrice assoctated with w. v, w and 6.
respectively

total number of degrees of freedom
number of elements

ith shape function associated with w. v w.and 6. respectively




.\',“ ith shape function of CY type
.\',-1 ith shape function of C! type
Py .P..P,.Py number of shape function associated with u, v. w, and 6.

respectively

Pyr) quadratic polvnomial representing generic cross-sectional
property

Pyla) quartic polynomial representing generic cross-secticual property

q;'.q; g} .qf’ ith discrete degree of freedom associated with u. v, w, and 6.
respectively

SV matrix function defined by fl Py(x)NONO dr

~ i.] : * Y Jo J\rji it j

qup matrix function defined by [IP( YNOY(NOY (.

S ix function defined by fy Py(x)(N;7)(N}) dr

S,l.j matrix function defined by fé Py(z)N} le dr

oLP atp ot : Lp.(. ' .

.SI‘J matrix function defined by [, P_;(.I.‘)(Nil) (le)' dr

S}_fp matrix function defined by f(f P4(:17)(N1-] )”(1\'})” dr

kinetic energy

t time, sec

|8 strain energy

w.rar displacement along X-. Y-, and Z-axis. respectively
XY.Z rectangular axis system with origin at one end of beam:

X -axis along neutral axis of beam. and Y- and Z-axes oriented
parallel to principal axes of beam

Loy independent variable along X-. Y-. and Z-axis. respectively
u?. ,i?, *,? coefficients in generating equation for NI0
(z,l. ,311. 71-1 coefficients in generating equation for Nil
&) first variation of ()
0 (¢#7)
"’i.j . .
1 (t=17)
‘ -1 (i=2o0r4)
A1) .
Ul (Otherwise)
] rotation about X-axis (i.e., torsion)
P mass density
Wiy Wi 1th axial. lateral bending. and torsional frequency. respectively.,
fi I
rad/sec

Primes to a svinbel denote a derivative with respect to x. A dot over a symbol denotes a derivative with
respect to time.




Basic Mathematical Formulation

The beam finite element is derived assuming that the beam behaves kinematically like a Bernoulli-Euler
beam. Rotary inertia effects are included: however, shear Hexibility is ot included in the present formulation.
The cross-sectional area can vary as a quadratic polvnomial along the length of the beam. and the area moment
of lnertin can vary as a quartic polvnomial. The element axis system N Y. Z is oriented so that the X-axis is
along the neutral avis of the undeformed beam. and the Y- and Z-axes are parallel to the principal axes of the
cross section. (8ee fe 1) This orlentation results in a zero cross product of inertia (Iy 7z = 0). The continuous
displacements «. oo w. and 8 are assumed to be ouly a function of o and time.

Hamilton's prineiple is used in the derivation of this beam element.  Assuming only conservative forces.
Hamilton's prineiple is stated as (ref. 11)

by
/ MT -V dt=0 (1
.f]

where #1 and > represent arbitrary times at which the state of the svstem is known, and T and V7 are the
Kinetic and strain energies. respectively, The kinetie energy of the beam is found in reference 12 as

T== / P [;lu“) i e Aa? + Ty B+ Ly () + 1,1)'(1,-’)-"] dr (2)
~ J0
and rhe strain energv follows <imilarly from reference 13 ax
S YL ; 5 ) ‘
V= / [M(u’)—’ + Ely ;00" + Elyy ()2 + (;.1(9’)2} dr (3)
<70

The continnous problem associated with the continuous displacements w. . w. and 6 is discretized by
imtroducing diserete degrees of freedom ¢, which are related to the continuous displacements according to

[)H
u= Z N/ (1)

=1

- "
r= Z Ng; ()

=1

b,
wo= Z Nq" (6G)

=1

r,
(}:ZA\"Iqu’ (7)

=1

Substituting equations (4) through (7) into equations (2) and (3) expresses the kinetic and strain energies
in terms of discrete degrees of freedom. The application of Hamilton's principle (eq. (1)) then teads to the
identification of the following nonzero terms which appear in the element mass and stiffness marices:

{
AYAE / pANIN dr (&)
i g0 N

/ 0 .

A\[,'j/ = / Iz {.‘L\',"A\";' + Izz(A\': )I(N; )/] dr (M
’ J{) : .
l .

4\[,{"/ = / 7] [,ALV]‘”'.’\';" + 1)')'()/,” )I(,\';")’] dr (1m

’ J0 k .
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MY = / pLxx NENY (11)
JO !

i.J
g : AR
K :/0 EANY(NYY da (12)
l
K!, =/ Elzz(NI)"(N')" dr (13)
V]
! " n
- ru '
A,-.jz./o Elyy (N)'(N")" da (14)
]
K!;= [ GINEY(N?Y dr (15)
' 0

Shape Functions

The discrete degrees of freedom are divided into two sets. external and internal. The 12 external degrees
of freedom. which are depicted in figure 2. correspond to the usual definition of the physical nodal degrees
of freedom for a beam finite element (ref. 14). The internal degrees of freedom have no physical significance
but are simmplyv the coefficients of the higher order shape functions. These internal degrees of freedom serve
to increase the accuracy of the transforimation from the discrete problem having a finite number of degrees of
freedom to the continuous problem having an infinite number of degrees of freedom. The number of internai
degrees of freedom used in the beam element is specified by the data input file and may vary from zero to
theoretically infinite. Setting P, = Py = 2 and P, = P, = 4 in equations (4) through (7) will lead to the
classical 12-degree-of-freedom beam element. Increasing any of these P’s adds internal degrees of freedom to
the element. The shape functions N; are usually taken to be polynomials although in theory they can be any
set of functions.

Shape Functions for u and ¢

The shape functions N} and .’Vf’ are identical and have C(’-t‘ype continuity. That is. continuity is enforced
across element boundaries. but continuity of the derivatives across element boundaries is not enforced. Shape
functions satisfying C? continuity will be denoted by NiO (le.. N/t = NI-H = NIO). The first two shape functions
in this set are the well-known linear polynomials (ref. 15)

N?=—§+1 (16)

Ny =72
{
The higher order C'-type shape functions used herein were derived subject to two requirements: First. the
" continuity is enforced by restricting the higher order shape functions to be zero at the elemeut boundaries,
and second. the set of higher order polynomials must be orthogonal with respect to their first derivative.
Orthogonality of the first derivative was chosen over polynomial orthogonality because the element mass and
stiffness matrices obtained by requiring first-derivative orthogonality contain fewer nonzero terms: thus explicit
integration is facilitated. This also results in matrices which are better conditioned than those obtained from
orthogonal shape functions. These requirements are expressed mathematically by the following equations:

N0y =0 (i > 3) (18)
NYy=o0 (i >3) (19)

!
/0 (N)(NDY dr = %o,J (1>3.7>3) (20)




The first three higher order CO-type shape functions in the set defined by equations (18) through (20) are

2
~ xT xI
Ny =V3 (Tf - 7) (21)
o 2
0 /F nF oL T
N =V5 (—zﬁ +357 - 7) (22)
4 3 2 .
0 rfl e T I s
A\L—) = \/7(0[—_1—10[—34'61—2—7) (23)

In general. once A\'.L‘;’ is known. the / + 1 shape function can be found from the recursive formula

NO = (@ 28N —AIND L (i) (24)

i

where

= >3 25
o T (+23) (25)
(4 — 6)y/2 = 1
0= - . (i >3) (26)
/21— 3
1 —3)v2i—1 )
7 = (—*I—;—l_{)— (12> 3) (27)

Shape Functions for » and w

The shape functions .N}" and N/* require Cl-type continuity. meaning that both the functions and their
first derivatives must be continuous across element boundaries. The shape functions N and N/ are identical
except that V)" = —Nj and N{ = —Nj{ to ensure that the discrete rotational degrees of freedom g5 and g¢;
have the sense indicated in fijure 2. Shape functions satisfying C! continuity will be denoted by NI-1 (i.e..

N = AN = N,-l). The first four C!-type functions for the beam element are (ref. 15)

N :2%J —3”;—22+1 (28)
N%:%—zx;m (29)
Ni = —271—: +3“l"—; (30)
N{ = 7—23 - ’TZ (31)

The derivation of the higher order Cl-type shape functions employed in this paper is based on the same
philosophy as the derivation of the C%type shape functions. To ensure C! continuity the higher order shape
functions must have zero slope and displacement at the element boundaries. Consistent with the previous
discussion on the orthogonality properties of the C%type shape functions. the Cl-type shape functions are
required to be orthogonal in their second derivative. The specific requirements are

NYoy =0 (i >5) (32)
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Vi =0 (i >5) (34)
(NY'(ih =0 (i 25) (35)

l 1
A(Mwmwvwf:ﬁmJ (i>5.7>5) (36)

The first three higher order Cl-type shape functions in the set defined by equations (32) through (36) are

. . i 3 2 .

M=Volgi-F g (37)
.3 = .3 .2

S A S 1 ‘

_\U~\/T(—l—:3+-2?‘*‘2[—.5+—2—17§> (38)
= .6 5 =l 3 .2

o r vy 15x 10r a _

‘\7“/“5(31_6“1—5*?_373_*? (39

If \} 1s given, A\"l-l can be [oun from the recursive relation
1 ] )| 1 1 arl ; =
.\1[+1 :((Yl‘ +‘l’))i )‘)Vl “’yl J'Vl'_l (120) (4(])

where
] (2t — 521 -3
N
(42 — 10)v2¢ - 3

gl = - 25 2
1 V2 =5 (129 (42
(i=5)V2 =3 - )

v = (i
! iv2i -7

Matrix Functions

Inspection of equations (2) and (3) indicates that there are ecight cross-sectional properties associated with
a beam element. Two of them. pA and EA. are represented by the quadratic polynomial

Pa(z) = agx® + ajr + ag (1)

The remaining six properties, plxy. plyy. plzz. GJ. Elyy. and Elzz. are represented by the quartic
polvnomial '
Py(x) = a4;r4 + (L;;I'i + (1212 +ajxr + ag (45)

Because these polynomials can represent any of the aforementioned cross-sectional properties by substituting
in the appropriate values for the coefficients a;. equations (44) and (45) are referred to herein as “generic
cross-sectional property polynomials.” Note that Pp(x) is a subset of Py(x). and, therefore. the coefficients ag
through as refer to both polynomials. The context in which the coeflicients are nsed will clearly specify which
generic cross-sectional property polynomial is being referenced.

Substituting the generic cross-sectional property polynomials for the actual cross-sectional properties in
equations (8) through (15) and substituting generic N0 or N1 shape functions for the displacement-specifie

7




<hape functions. the 10 terms in equations (8 through (15) are reduced to 5 unique terms. These five unigue
terms are referred to herein as “matrix functions.” and have the following definitions:

l
S:)J = / P«l(‘l')-\',“.\':] dr (46)
) Jo -
0P [ TN, _
S =‘/U PN N de (47
l
SII_J = A Py(r)N] A\'Jl dr (4R)
l[) [ o1/ ARV
‘SVI.J = /“ P;(J)(‘\I ) (4\1 ) (IJ‘ (1())
\PpP ! 1N
ey = A PN (N dr 501

The matrix funetions are functions of a cross-sectional property which is shown as an argument in
parentheses when appropriate. for example. S:-'j(/):l). The expressions for the nonzero terms in the mass and
stiffness matrices given by equations (8) through (13) can now be expressed in terms of the matrix functions

as follows:

MY = 8] (pA) (51)
M= ShpA)+ S (pI57) (52)
My = AODM[SY(04) + ST (plyy) (53)
M =S (pIxx) (54)
K!'; = S?(EA) (55)
K!; = SIP(EILy) (56)
K} = MOMG)SHET (ELyy) (57)
K? = s (58)
where 1 =2 4
- =20
AG) = { 1 ((z)thcrwrise))} (39)

Explicit expressions for the five sets of matrix functions for i = 1,oc and j = 7. >c are given in appendix A.
Expressions for j = 1.4 — 1 are not given because the matrix functions are symmetric (i.e.. §; ; = S5 ,).

Element Mass and Stiffness Matrices

The nonzero mass and stiffness terms given by equations (51) through (54) and equations (55) through
(58). respectively. must be appropriately assembled to form the element mass and stiffness matrices. This
procedure depends on the arrangement of the discrete degrees of freedom in the elemnent vector of unknowns.
The first 12 degrees of freedom in the vector of unknowns are the external degrees of freedom associated with
the classical beam element. The higher order (internal) degrees of freedom are positioned after the external

8




degrees of freedonn in the vector of unknowns. Specifically, all the internal ¢*'s are grouped together. then all

the mternal ¢' s are grouped together. and so on. The final arrangement of nnknowns is given as follows:

Mass Matrix

( 1 )

42
43
44
45
q6
47
UE
qq
910
411
q12
413

12+ 0,2
J13+ P, =2

N2+P -2+ -4

G154+, -2+ -4

124D, -2+ P —4+ P, ~4
N3+ P, =2+ P -1+ D, -4

\ Q12+ P, -2+ —4+P.-3+P,-2 )

'4

()
()
w(0)
A(0)
—u'(0)
(0)
u(l)
()
w(l)
#(1)
—u'(l)
e

i

43

)

(o0

The clement mass matrix is partitioned into several submatrices consistent witii the arrangement of the

degrees of freedom in the vector of unkunowns given in equation (60). This leads to a matrix of the form

[Mge M, M,

T 0

sym

w

El
0
0

u

11

[
MI_"I T

0

0

0

[0
I\/III J

(61)

The submnatrix M gg is termed the external submatrix because it is associated only with the external degrees
of freedom. This submatrix. which is given by the following equation. is a 12 by 12 matrix and reduces to the
classical consistent mass matrix for constant cross>-sectional properties:




sy

f 0 S A ¢ 0
.s'l' Y .\‘I' Y
u o 0 i 0
*,\] .,-';'l‘,’/l v-,\l ‘{/'l//\
=N e Sl (g4
i U 0 0 A
-~y =Nelyy )
{) 0 0 0 0
S - 51 o
= u 0 U "
Sty -ty
Shipas Sh e
r 0 T 1
=Sl 4»§~l,.‘t/11//|
89,4 0 0
-1
,\Hq,r;l\ 0
*‘\"l‘l'“/ﬂlx/l
Si S“"A“
=5ty

Slatply xo

S‘;_z (pdyy)

o
N
S \xp:\\

+billll/|I) y !

,\'.Iy . A

;1 ‘
St

S
Sl g

(62)

The submetrices Mo My, Mg, and M%I couple the external and internal degrees of freedom in the
elerment mass matrix. These submatrices. which are shown in equations (63) through (66). are variable sized
arravs of an order equal to 12 by the number of internal degrees of freedom corresponding to the particular
rontinuous variable. For example. let P, represent the number of discrete degrees of freedom associated with
. Then. because there are always two external discrete degrees of freedom associated with w. the dimensions
of Mg, are 12 by P, — 2. It is of interest to note that the coupling terms associated with the higher order
internal degrees of freedom become zero if a suficient nmunber of internal degrees of freedom are included.
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My =

ol
'\l

5!

01
'\,S

01
'“x,

MY, =

]

A
.)\,');{1 - _Sl ',‘/'IZZ'

= S, 0

0

- /;;1 1+ S:ls.l.:l ()IZZ 1

.’I/;:U - S{‘l.:lplzz)

8] 0
0 0
0 0
8] 0
0 0

0 \]

0 0

1] t)

0 1]

0 0
0

1 qvl
polpdy+ Sz 2)

.l_h(/lxl) + S_zl'lh(plzz )

0

Sotedy+ S35 elzz)

FolpAy+ SH 15 )

. ¥ - .
—Mll,ll""'” h‘l"‘(p,-\) Sll.‘.)(pri) 5(1’.1,“"‘“ 0

0 0
0 0
i} 0
0 1]
0 0

8] 1l
0 0
{0 8]
0 8]
0 0

9

y 1P
SLitpN) + Sihgtelz 20

.S',}.m(p:l) + S},’;U(I'IZZ )

0

S‘.yl“(/)A) + H:H“(/)IZZ )

(63)
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_ 0 " 0 (LA
0 0 0 0
stapar= sty stipn e stBonyy 0 st e+ stiiehyy o
0 0 0 0
~h ey = Sty =S = SRRy =S e = STy 0
0 0 " !
My = a 0 o u 0]
i 0 u 0
,s"l‘._‘\/.ﬁ\w - ‘\'.,;I_:(p[} y ) S:l“hlp;ﬂ + S:i.{:(“l)‘)' b H;ls,lu(/"’“ + ‘q:ls.ll)uu'l)')‘\ v
\ 0 - 0 !
'Si."("’““‘ - F}_[':"/'l)')" _S}_h(/“'“ B S}_]h,””)') b 'S}.ln‘/"'“ N HiAllvn(/’[YY L r
0 v Y !
- U 0 0 0 ]
0 0" 0 0
0 U 0 (4
SY gl Sl Siatelyx) 0
0 0 0 0
0 0 0 [V
MY (60}
0 0 0 0
0 1 0 0
0 0 0 u
Syl xSy yelxx o Sydelxy) 0
0 0 0 0
L 0 0 0 0 J

The mass submatrices corresponding to the internal degrees of freedom are given by the following equations
fegs. (67) through (70)). Note that these submatrices are symmetric and banded. Their size depeuds on the
uuber of internal degrees of freedom emploved for a particular cor ‘inuous variable.  Given that P is the
number of discrete degrees of freedom associated with ¢ and that there are always four external degrees of
freedom associated with v, the size of My, is P — 4 by P — 1

SY e SY e o SY - pA) 0 0 0
Yy S o CHMPEY 0 0
i - ' (iT
Mjy sym .'5"'.1) EY 5(.: h(/:.'i) o -5‘—1,,1/'4‘” 0 .. (67)
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r DA S SE e
' i ' 0 0 0
v , SRAR . g
- Ml =sahd g w85 el
5"1‘ oo ,s‘({ YT .S"{ I_.(,;Al
S vk e 4 u
sl Sl S,z .
M), = (68)
St shopdy s!oed
sym e e v 0
wSilpl gy 820l ) +8: el )
- -
RN N shoed)
o o i 0 0 0
~SHplyy <Ny g *S-,H'/"H )
Shea Shopa EIRVEY
e L P 4 u
) «5,'“<,»[)) ¢,\IIT(,II)) ) "‘S(.l.‘("l)) ) .
MY, = {69)
st s! RYIEY st . ‘l;ﬁ:l\
sy % o o 0
TS Lplyy S tphyy +N2 el y)
L J
() - () -1
Syaiedyx) Syglelyx! S 5340(/)1‘\' ) 0 1] 0
) ~1) )
31.3(1’1‘\'-\' j S—l.i(pl-\"\’) 54.”)(111_\"\') 0 0
MY = (70
11 sym Sg‘stpl'\r‘\') Sg.(j(ﬂ[-" x) o S.";).l 1 (plyy) 0 )
[ J
Stiffness Matrix
The stiffness matrix is partitioned similar to the mass matrix and has the form
r . H r u [
Kre Kgp Kipp K KT
H
Kj o0 0 0
_ N d
K= Vi 0 0 (71}
e
sym K” 0
f
L K 3
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The external stiffness submatrix Kgg is given by the 12 by 12 matrix in the following equation and reduces
to the classica] beam element stiffuess matrix for constant cross-sectional properties.

Kip =

r T

SR 0 0 0 0 sE o 0 0 0 0
EARE S PP 0 0 SIEPEL 7 0 SHPEL 0 0 0 ST (El )

SHPELR v o =S ELy) 0 o SHPELRyy 0 =SIEPERy) 0

sYliGn 0 0 ] 0 0 SYG) 0 0

SIPELyy 0 0 0 =SEPERyy 0 SUTELyy 0
S\IBPEL; ) 0 SMTEL ;0 0 0o SUTEL

SYLLEA) 0 0 0 0 0
sym S\ Lz 0 0 o SEPEL .

SSEPELyyy 0 =SUPELy 0

SYG 0 0

S ELyy) 0

SPhMELzz)

(72)

The submatrices Ki ;. K. Ki;. and K%l couple the external and internal degrees of freedom in the element
stiffness matrix and are given by the following equations. These submatrices have the same dimensions and
properties as the corresponding external-internal coupling mass submatrices (eqs. (63) through (66)) discussed
previously.

r (U
SYLEA SYEA) 0

0 0 0
0 0 0
0 0 0
0 0 0
,;{, _ 0 0 0 ... (73)
Y EA SYNEA 0
0 0 (]
0 0 0
0 0 0
0 0 0
0 0 0
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El—

SYEP(Elyy)

0

~SIEPELyy)

K

Sie Elyy)
0

-S{EPELyy)

0 0
I 0 0
0 0
0 0
sy sYGa
0 0
0 0
LI
El'™
0 0
0 0
0 0
AP Jor
sy s9G
0 0
L 0 (4

0 0

Sllllgl)(l':lzz) i}

V] 0
0 0
0 0

SIPEL ) 0
0 0

‘)l[’p(F[Z]) 0

0 0
0 0
0 0

0 0
0 0

0P
SIGI) 0

0 0
0 0
0 0
0 0
0 0

0

\]
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The stiffness submatrices associated with the internal degrees of freedom have similar characteristics as
their mass counterparts and are defined as follows:

A S QU7 AP Al NI AN
.\:‘_:" E4) }'JS. l(E A) b:m (E4) 0 0 0o ...
RV M NUM {7
SWEA SYEEA) SUEEA) 0 0 ..
K, = I » ) (77)
sy SUEA) SUEA) SYDEA) 0
L i
P pL, 0 SHT(RL ) ST (EL; ;) 0 0 0
ST EL ) SHEP(EIL ;) SUP(ELy ) 0 G
K' = o AT - p (78
i sym Sz SHTEIL ;) SIV(EIzz) 0 )
ST ELyy SET(ELy) SHP(Elyy) 0 0 0
SHEPELy ) SIEP(Elyy) S ELyy) 0 0
K" = 5 N 79
i sym S.‘l..'{;[)(E[)')') 571_’:1 (Efyy) 57”1’{ (ELyy) O ( )
UK (P 0r
seBGay s§tGa) S {el)) 0 0 0
st LGy WG 0 0 ...
K? = , 80
I sym sy sOPwwn .. SGn o (80)
L B

All the relaticns needed to completely define the tapered p-version beam element for an arbitrary number
of internal degrees of freedom are now in hand. These include the matrix definitions given in equations (61)
through (80). the definition of the cross-sectional property polynomials given by equations (44) and (45). and
the explicit expressions for the five sets of matrix functions given in appendix A.

Numerical Validation and Preliminary Performance Analysis

The beam element developed herein is capable of emulating four different types of beam elements: uniform
h-version, uniform p-version, tapered h-version, and tapered p-version. A uniform (h- or p-version) element
is created by restricting a; through a4 to be zero in the generic cross-sectional property polynomials. An
h-version (uniform or tapered) element is created by restricting P, = P = 2 and P, = P, = 4. Once the
uniform versions of the element are validated, they can be used to approximate a tapered geometry for the
purpose of validating the tapered versions of the element. Similarly. the p-versions of the element should
converge to the same results as the h-versions of the element.
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Computational Approach

Numerical results for most of the cases analvzed were computed on an IBM Model 80 computer operating
at 16 MHz and equipped with an 80387 math coprocessor and running PC-DOS 3.3, Because of computer
care limitations. those uniform h-version cases containing 15 or more elements were run on a DEC 3200
VAN workstation running VMS. However. all computations used eight-byte floating-point representation of
real munbers conforrning to the IEEE standard (default on the IBNM computer but requires a /G compiler
option on the VAN computer). Because the computer code used to generate these results was not written to
take advantage of ti.e svinmetry and bandedness of the global mass and stiffness matrices, a fair comparison
of compute times cannot he given. The ouly measure of computational etficiency presented is the number of
deoerees of freedom versus the accuracy of the models. The eigenvalue extraction technique used is a combination
of the determinant search method and inverse tteration (ref. 16). The determinant search phase employs both
the bisection method and the secant method to converge to an eigenvalue, Inverse iteration is then used to
obtain the associated eigenvector,

Validation of Uniform h- and p-Versions

A uniiorm beam element can be validated rather casily because closed-form solutions to the axial and
torsional vibrations and “nearly closed-form™ solutions to the bending vibration problem exist. (See ref. 12.)
The derivation of the closed-form expressions for these frequencies is presented in appendix B because the
derivations comnonly found in the literature do not include the rotary inertia terms.

The uniform. cantilevered steel beam with a circular cross section shown in figure 3 was used to validate
rhe uniform versions of the element developed herein. Representative h- and p-version finite-element models of
the beam are also shown in figure 3. The material properties of the beam used in the numerical studies were
as follows:

E

30.0 x 10% 1b/in®

G =116 x 10° Ib/in?

p = f).2.84 Ib-sec? /in*
386.4
For validation of the uniform versions of the finite element developed herein. the lowest frequencies of this
beam were calculated ~exactly™ using the closed-form solutions in appendix B and numerically using both the
h- and p-version elements. The first four bending frequencies. the first torsional frequency. and the first axial
frequency. froui appendix B. are

foi = 27.4651 Hz
fr2
fr3
fra = 930.8451 Hz

171.6155 Hz

178.2670 Hz

It

fo1 = 523.4749 Hz
ful = 841.7997 Hz

These six frequencies will be regarded as “exact™ for the purpose of validating the uniform h- and p-versions
of the beam element. Table I shows the frequencies obtained using the uniform h-version of the finite element
as the nmber of elewents used was varied from 1 to 14. The exact frequencies are given at the bottom of
the table for reference. Althongh only the first bending frequency truly converged with 14 elements. the other
frequencies are nearly converged (within (.06 percent).

Table 1T shows the frequencies obtained using one p-version element as the number of internal degrees of
freedom is increased from 0 to 13 for each of the four continuous displacements. That is. in table 1. 13 internal
degrees of freedom refers to 13 internal degrees of freedom each for . oo w. and €. for an aggregate total of
52 internal degrees of freedom. Again, the exact frequencies are noted at the bottom of the table for reference.
[t is clear that all the listed frequencies have converged with 13 internal degrees of freedom. and that the
converged values are essentially equal to the exact values. In figures 4 through 9 the information in tables
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and Il is plotted in terms of the percent error versus the number of degrees of freedoni. The plots clearly show
that both the p-version element and the h-version element converge to the exact answer. and that the p-version
element has a faster convergence rate than the h-version element.

Validation of Tapered h- and p-Versions

The tapered steel beam with circular cross section shown in figure 10 was used to validate the tapered
versions of the finite element developed herein. Also shown in figure 10 are representative h- and p-version
models. Because the results shown in tables T and II have validated the uniform versious of the beam element.
the exact frequencies of the tapered beam can be determined with a uniform h-version model if a sufficiently
large number of elements are emploved.

The frequencies obtained for the tapered beam using uniform h-version finite elements are presented in
table III. It should be noted that the frequencies in table I approach the converged values from below
fwhereas in tables I and II. the frequencies converge from above). Also. the number of elements required to
reach convergence for the tapered beam is over seven times that required for a comparable uniform beam.
Both these behaviors can be explained by the fact that. as uniform elements are added. the geometry of the
model is changing. The geometry approaches a smoothly taperced beain as the number of elements in the model
approaches infinity, Here. the model is assumed to be converged with 100 elements (600 degrees of freedom).

The frequencies predicted by using a tapered h-version finite-element model are shown in table IV. In this
case the geometry of the problem is represented exactly using one element. and therefore the geometry of the
model is not changed as the number of elements is increased. It should be noted that now convergence is from
above and is achieved using approximately one seventh as many elements as in table I11.

Table V' shows the frequencies which were obtained for the tapered beam using one tapered p-version
elemment and varving the number of internal degrees of freedom from 0 to 19. With 19 internal degrees of
freedom. 22ud order polvnomials are used for lateral bending and 20th order polynomials for the axial and
torsional displacements. The reason for showing the results of such a high order element is to demoustrate the
numerical stability of the element. It is seen that the p-version results in table V couverge very close to the
values predicted by the h-version beams in tables III and IV but with the use of far fewer degrees of freedom.

The data in tables 111 through V are graphically depicted in figures 11 through 16 in terms of percent error
versus the number of degrees of freedom. These figures show the dramatic improvement in convergence which
is realized by using tapered h- and p-version elements instead of uniform h-version elements.

Conclusions

The derivation. and validation. of a new. tapered. p-version beam element which both facilitates convergence
checks and produces a better convergence rate than nontapered. h-version beam elements has been described.
These two characteristics complement each other and. when combined. provide a powerful and versatile beam
element which is easy to use. The shape functions on which the element is based were derived by using
orthogonality relationships which produce element matrices that are extremely well-conditioned and of a forin
allowing explicit integration in the derivation of the element matrices. The latter feature eliminates the need
for numerical quadrature: thus. roundoff error is reduced. The shape functions are hierarchical such that higher
order element matrices can use the element matrices from previous lower order analyses. This simplifies the
derivation. coding. and validation of the element. The present form of the beam element has been derived in a
manter which allows for an infinite number of internal degrees of freedom. The beam element has been tested
with up to 22nd order Cl'-type shape functions and up to 20th order CO-type shape functions with no evidence
of ill conditioning or significant roundoff error.

NASA Langley Research Center

Hampton. VA 23665-5225
June 23, 1959
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Appendix A

| Expressions for Matrix Functions

! Explicit expressions for the matrix functions are presented in this appendix. Each matrix function is a
function of the element length [ and the coefficients from the generic cross-sectional property polynomials. q
through ay.

The definition of the Y set is

1
S / Py NONY (A1)
! Jo !

and the explicit integrations are

G ldagl? + Tasl® + Haal? + 35a;0 + 140ay) (A2)
R 120 o
§ - [10a gt + Tagl® + 2Lagl? + 35a, 1 + T0aq) A3
b2 120 o
o 60aglt + 70a30% + 84al® + 105a,1 + 140ag)
S0 = - (A4)
120
U, = =127 23 [ = 5)(3301 = 685 + 1990/7 — 149100 + 15492)ay

S
=3R40 = 8) (230 - 41()'1'3 +2697i% — 74197 + 7305 )ayl?
+6(i = 8)(1 = T)& = 902 + 3220 — 365)ayl®
+ i =8) i -7 ~6)( = 4)(di — d)ayl

+ 350 = 8)(i = T)(i = 6)(i — 5)(2i — H)ag)

{168(587/° — 15825i% + 166115:° — 8460752 + 20877981 — 1994340)) (A5)
SN {A6)
Sl ‘

1=9.x
5§ = 1V20 =3 [( 531 — 78251 + 84335:% — 44202512 + 1124532/ — 1108260)a,!?
=R 50— 8)(50it — 9953 + 722442 — 226417 + 257T0)ayl?

+3(i - 8)(1 — 7)(68:% — 905i% + 3907i — 5440)ayl?

+3(i = 8)(i = T)(i ~ 6)(52i% — 4134 + 783)a;l

+ 35(1 — 8) (1—7)(1—())(1—.))(41—13)(L0]

/[168(387i% — 15825i% + 166115i® — 846075i2 + 20877987 — 1994340)] (AT)
sy, =0 (AR)

1=9.x

S =120 = 3)[3(7i - 423 + Ti% + 168 + 60)ayl?
B L (20 4 3)(20 — 9)(Ti% = 210 — 10)ayl?
+ 2020 + 3)(2i — 9)(5i% — 15i — 8)ayl?
+ (20 + 3)(2i + 1)(2i — T)(2i = 9)(al + 2a9)]
/116020 + 3)(2i + 1)(2i = 1)(2i — 3)(21 = 5)(21 = T)(2i = 9)] (A9)
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S:)wl —1*V2i = \/ 2 — [ (i— 1) =2i = 5)(1413
=3 '—l)(u - 14 - 50)(131 +2(i—])(2i+3)(‘2i—T)(u-gl-i—a;)]
l()()1+ 32 + D2 - 1)(2i—3)(2i—5)(2i—7)] (A10)

Sy = V2BV L5 = (= 1006 =i = 8)ayl
ERN LN V(= 320+ 5) (20 = Thagl® + B(2i 4+ 5)(2i — TH2i% = 2i — 9)ay®
+ 8020+ 5)20 + 3)(20 — 5)2i = T){ayl + 2ap))]

/’[15-1(21' + V20 + 3N+ )20 — 120 — 320 — D)2 — T)] (All)
SY = PV 3V 310032 = Tyl + (132 — 85)ayl?
=N 20+ 520 = D) apl +(11)]

J132020 + 5020 + 3)(2i + 1)(2i ~ 1)(2i — 3)(2i — 5)] (A12)

5:',”——1;\/21— V2i+5[(i+ 1) (1382 + 130 — 116)ayl*

RN (4 120+ T2 = D) (Bugl + 2ap)]

J[B2020 + TV + 5)(20 + 3)(20 + 1)(2i — 1)(20 = 3)(2i — 5)] (Al3)
U W20 =32 + T+ 2)(0 + 1)i(2ayl + ay) A
LT 3220+ 720+ 5)(20 + 3)(20 + 1)(20 — 1)(27 = 3) :
g —V2T = 3VTF 00+ 3)(i + 2)(0 + Diayl? AL
DS T G20+ 9)(20 + T)(20+ 5)(20 + 3)(20 + 1)(20 - 1)(20 = 3)
s:’HJ = () (AL6)

i=3.x. y=T.x

The definition of the SO set is

{
SO = [ Py (N (NYY dr (ALT)
0

and the explicit integrations are

GOl _ 12040 + 15a303 + 200902 + 30a;1 + 60aq

s = Al
1.1 60! ( )
GoP 12a4l% + 15a303 + 20a0% + 30a,! + 60ay (ALD)
1.2 60! o
P _ 12a401 + 15a30% + 20a90% + 3001 + 60aq (A20)
2.2 60! '

S = V27 7330204 — 10612 + 18330 — 2644)ayl?
=G (= 6)(25i2 = 2027 + 38T)asl? + 2(i — 6)(i — 5)(26i — 83)al

+ 1000 = 6)(0 = 5)(i ~ )] /[30(47i — 6282 + 2729i — 3792)] (A21)
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g’/ 11
r=3.x

q”[’

i
r=3.x

S“P

ra+3 T T

1=3.x

Slll’
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i=3.%x

~) P
Sll-r_/
r=3.x. y=Hx

= =2 = 331293 — 4067 + 18337 ~ ‘>(544)a;l:‘ + 30 — 6)(20:°
)

+ 200 = 0) (1 = HN260 = 83)asl + 10(1 — 6) (¢
CTB0GT = 62802 + 27290 — 3792))]

i —4) nl]

= (350 = 210 + 3057 + 300 — 88)(20 — 3 (1;14

220+ D)2 =32 = )5~ 150 + 1)(1;[
S0+ D20 = 3320 = TIBi% = 90 = Dol
+ 20+ D20 = 1)(20 = 3)2i = 5)(20 = Tyl + 2a9)]
SR+ 1020 = 1IN0 = 320 = 520 — 7))

\/71—_\/7———[ = 1) -~ 14/ = 8)(1,;13
+ 300 = (5% = 10i — omzz
+ 0= D20+ 120 - d)lagl + ay)]
JIR20+ D20 = 1120 = 3)(2i = 5)]

= V20 = 3V2Zi + 1[2iti = 1)(Ti% ~ Ti = 26)ayl®
= D20+ 320 = 5)(Bagl? + 2a1)]
J[R(20 4 3)(20 + 1020 — 1)(20 = 3)(2i = 5)]

V2T =3V + 30 + 1)i(i = D(2a48% + ayl?)
B(2i + 3)(27 + 1)(20 — 1)(2i = 3)

VT =BV2i 56+ )0+ Dt - Dagl?

T 16020 +5)(20 + 3)(21 + (20 = (% = 3)

=10

The definition of the S! set is

1
Sy,

{
= / Py(r)N} Nj‘ dr
JO

— 2020 + 38T )ayl?

(A22)

{A30)

(A3D)
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aud the explicit integrations are

[ 19asl? + Hdayl + 234ay)

st o=

b 6:30
ol F1Tal® + 2a00 + 132ay)
R 2520
ol [146asl? + Slayl + 162ap)
IR 1260
o I2(19a(? + 36ayl + TRay)
VLA T 2520

g Paasl? + 9ayl + 21ay)
Sy, = =

= 2520

¥ F25a00% + 12a,1 + Taag)
Sy = S

2520
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: 2520
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The definition of the ST set is
11) [ 1.7
S = /) Py 4\',1 ) N de
A b

and the explicit integrations are
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Appendix B

Derivation of Vibrations of Uniform Beam

The dertvation of the closed-form solutions to the vibrations of a uniform beam is presented in this appendix.
Iiac the bendmg vibration problem is solved. and then the torsionat and axial vibration probli, are colved.
Consider the translational displacement ¢ onlyv. Using the expressions for the kinetic and strain energies
givenr in equations (2} and (3). respectively. and assuming harmonic motion give the following governing
differential equation:
2 2
pet g pAes
— - =1y (B1)
E Ely,

When taking into account the cantilever conditions. the geometric boundary conditions are

Jqn

-+

r{0) =0 (B2)
¢(0) =0 (B3)

aud the natural boundary conditions are
o =0 (B34

)w““)

ML) 4 ’—Eil’u) = (B5)

The general solution to equation (Bl is
olr) = ky RLIE ky e P & kg cos(bor) + kysin(bor) (B6)

where &y, koo kg and kg are constants that depend upon the boundary conditions. and b and by are defined

1 \/A% + 44y - Ay B
= ( -
1 \ 5 (B7)

\/.4‘3 + 449+ 49
(B¥)

2

by

by

Il
-

where ‘
pAw?

Ap =
0 El;;

2
Py
—_ B10
I3 ( )

Substituting the general solition given by equation (B6) into the boundary conditions (egs. (B2) through (135))
resilts in four finear equations for by through &y that can be expressed in matrix form as follows:

(BY)

A

I

! 1 1 0 A 0
,ll —~f;] 0 ’)2 1\‘2 0 B1 1)
b Ml bf emhil —h:ﬁ('()s(hzl) —h:ﬁ sin(hyl) ks [ Yo (
f),(hf + Ay Ml —bl(h% + Ag) ol ])2(’)5 — Ag)sin(hol) ~b-2(b5 — Ay)cos(hyh) ky 0

The bending naterad frequencies of the beam are those which make the determinant of the 1 by 4 matrix
in equation (B11) eqnal to zero. For the example deseribed in the main text of tius report. the first four

frequencies are
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foy = 27.4651 Hz
fuy = 171.6155 Hz
fuy = 4782670 Hz
foq = 930.8451 Hz

Now consider only the torsional displacement 6. Taking equations (2) and (3) as the kinetic and strain
energies, respectively. and assuming harmonic motion give the following governing differential equation:

2
0" + /’IXXWQB -0

B12
b (B12)
The boundary conditions are
f(0)=0 (B13)
() =0 (B14)
With 6% = 117‘7\7:[1 the general solution to equation (B12) can be written as
B(x) = ky cos(bx) + ko sin(bx) (B15)

Substituting equation (B13) into the boundary conditions leads to the 2 by 2 matrix system of linear equations:

[”Silll(bl) cos(zbl)} {1};;} - {8} (B16)

Setting the determinant equal to zero and solving for wy yields

nr | GJ -
wo = oF xx (n=1.2....) (B17)

For the beam of figure 3. the first torsional frequency is

for = 523.4749 Hz

The governing Jifferential equation for the axial displacement of the beam is of the same form as that for
the torsional displacewent given in equation (B12). Only the constant b is different. The natural frequencies

can be shown to be
E
wy = o 2 (n=1.2...) (B18)
20V p

For the beam of figure 3. the first axial frequency is

fu1 = 841.7997 Hz
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Table 1. Convergence of Frequencies for Uniform. h-Version Beam

Ndof | Nelem fe1- Hz fu2. Hz fus. Hz fvs. Hz fo1- Hz fu1- Hz
6 1 27.3953 270.3419 577.2137 928.2170
12 2 27.4784 173.0589 581.7178 1649.2712 537.0115 863.5679
18 3 27.4679 172.1745 484.1519 1081.3530 529.4733 851.4457
r 24 ! 4 27.4660 171.8138 481.9206 944.1763 0926.8447 817.2186
30 1 5 27.4635 171.7006 479.9624 941.5603 525.6302 845.2656
36 6 27.4653 171.6575 479.1306 936.7340 524.9711 844.2057
12 7 27.4652 171.6385 178.7476 934.2196 524.5739 843.5670
18 o) 27.4622 171.6291 478.5541 932.8928 524.3162 843.1526
54 9 27.4652 171.6240 478.4485 932.1524 524.1396 842.8685
60 10 27.4652 171.6211 478.3871 931.7163 524.0132 842.6654
6o 11 27.4652 171.6193 478.3496 931.4469 523.9198 842.5151
72 12 27.4652 171.6182 478.3256 931.2736 523.8487 842.4008
3 13 27.4652 171.6175 478.3097 931.1583 523.7934 842.3119
84 14 27.4652 171.6170 478.2988 931.0791 523.7495 842.2413
" Exact . 27.4651 171.6155 478.2670 930.8451 523.4749 841.7997
Table II. Convergence of Frequencies for Uniform. p-Version Beam

Ndof Idof fri. Hz fuo. Hz fus. Hz fra. Hz fo1. Hz fu1.- Hz
6 0 27.5953 270.3419 577.2137 928.2170
10 1 27.4734 173.1390 906.1908 525.4401 844.9599
14 2 27.4652 172.5710 490.8033 2110.4920 523.5106 841.8572
1% 3 27.4651 171.6203 490.0998 988.0348 523.4752 841.8003
22 1 27.4651 171.6178 478.4139 987.4482 523.4749 841.7997
26 3 27.4651 171.6155 478.4039 932.4859 523.4749 841.7997
30 6 27.4651 171.6155 478.2675 932.4643 523.4749 841.7997
34 7 27.4651 171.6155 478.2674 930.8613 523.4749 841.7997
38 8 27.4651 171.6155 478.2669 930.8613 523.4749 841.7997
12 9 27.4651 171.6155 478.2669 930.8452 523.4749 841.7997
16 10 27.4651 171.6155 478.2669 930.8452 523.4749 841.7997
50 11 27.4651 171.6155 478.2669 930.8451 523.4749 841.7997
54 2 27.4651 171.6155 478.2669 930.8451 523.4749 841.7997
38 13 27.4651 171.6155 478.2669 930.8451 523.4749 841.7997
Exact . 27.4651 171.6155 478.2670 930.8451 523.4749 841.7997
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Table 111 Convergence of Frequencies for Modeling Tapered Beam With Uniformn Beam Elements

Ndof

Nelem

frr. He

I

fl"..’- Hz

fes. He

fea. Hz

fo1. He

fur- Hy

6
12
1=
2
30
36
42
'N
o4
60)
6o
T2
™
NS
90
150
300
150
600

9
10
11
12
13
14
15
25

o0

i)
100

36.7115
29,6562
T1.9805
TT.R9Y1
R0.9493
N2.6853
83.7H8)
44657
84.9554
R5.3083
RH.5H707
857711
85.9276
86.0520
%6.1526
86.H8Y&
86.7703
36.8097
R6.8373

35%.0925
172.5966
1879347
205.9470
2182511
226.0285
230.9909
234.3112
236.6301
23%.3102
239.5654
240.5273
241.2805
241.8811
212.3676
244.4943
245.4031
245.5723
245.7077

T09.7736
455.8576
441.9430
455.8657
470.7080
J81.8723
189.74H5
495.3418
199.4259
502.4906
50-4.84%4
506.7015
5038.1846
509.3901
514.7164
517.0280
517.4313
517.3087

1391.3137
1169.0279
¥93.5114
834.5421
835.1067
848.0075
R60.5784
270.3900
B77.7242
883.2469
R87.4925
890.8284
893.5011
895.6784
905.4243
909.7627
910.5346
911.2465

HTT.2137

934.4916
1089.9564
[156.4921
1189.17H8
1207.3211
1218.3655
1225.5667
1230.5161
1234.0613
1236.6867
1238.6846
1240.2401
1241.4746
1242.4707
1246.7811
1248.6001
124%.9370
1249.2228

928.2170
12559186
15954876
[381.3936
1396.35R82
1404.3645
1.409.1399
14122157
13128
HH.806%
1416.908%
1417.7150
1118.3946
1189092
1419.3238
1421.1123
1421.8642
1422.0033
1422.1216

|
l
|
‘\
\
?
|
|
|
!

Table IV, Convergence

of Frequencies for Tapered. h-Version Beam

. Ndof [ Nelem | f.. Hz fon. Hz fry. Hz for. Hz for. Hz fur. He
6 1 %6.9704 267.8185 1273.8317 1434.6350
} 12 2 86.9065 251.7443 533.1733 1203.8627 1271.8282 1432.6379
1% 3 86,8561 2474589 538.7430 940.3664 1263.2856 14283265
2 1 86,8434 216.2835 526.0757 958.9185 1258.0545 1425.9792
|30 5 86.8396 245.9340 521.0733 934.7022 1255.1634 L4214.7007
I 36 6 568384 245.8121 519.2780 921.7652 12534584 1423.965%
D! 7 86.8379 2457628 518.5613 916.4367 1252.3826 1423.4975
o 8 86.8376 245.7400 518.2391 914.1021 1251.6647 14231850
54 9 86,8375 245.7283 518.0774 912.9746 1251.1633 1422.9669
60) 10 R86.8374 245.7216 517.9880 912.3746 1250.8000 14228087
66 ¥ 86,8374 245.7176 517.9345 912.0268 1250.52%6 1422.6906
72 12 86,8374 245.7149 517.9004 911.8101 1250.320% 14226002
| 7x 13 56,8373 245.7131 5178775 911.6672 12501582 1422.5204
|84 11 868373 215.7119 517.8615 911.5687 1250.0287 11221729

33




Table V. Convergence of Frequencies for Tapered. p-Version Beam

I Ndof Idof fr1. Hz fu2. Hz fu3. Hz frs4. Hz fo1- Hz fu1- Hz
6 0 36.9704 267.8185 1273.8317 1434.6550
10 1 86.9555 249.6871 607.6043 1254.6750 1434.2370
Io14 2 86.8675 248.6826 545.9870 1173.2573 1249.4274 1422.2183
13 3 86.8417 246.2815 537.1999 1018.3391 1249.2122 1422.1270
22 4 86.8376 245.7577 520.7568 981.2253 1249.2122 1422.1223
26 D 86.8374 245.7151 517.9835 920.7022 1249.2093 1422.1164
30 6 86.8374 245.7151 517.9218 912.1356 1249.2074 1422.1149
34 7 86.8373 245.7127 517.8910 912.1356 1249.2067 1422.1145
38 8 86.8373 245.7101 517.8475 911.6613 1249.2065 1422.1145
42 9 86.8372 245.7087 017.8238 911.3808 1249.2064 1422.1114
16 10 R6.8372 245.7080 517.8140 911.2864 1249.2064 1422.1144
50 11 86.8372 245.7078 517.8104 911.2582 1249.2064 1422.1144
o4 12 86.8372 245.7077 517.8092 911.2498 1249.2004 1422.11.44
Bt 13 86.8372 245.7077 017.8088 911.2473 1249.2064 1422.1144
62 14 86.8372 245.7077 517.8087 911.2466 1249.2064 1422.1144
66 15 86.8372 245.7077 517.8086 911.2464 1249.2064 1422.1144
70 16 86.8372 245.7077 517.8086 911.2463 1249.2064 1422.1144
74 17 86.8372 245.7077 517.8086 911.2463 1249.2064 1422.1144
78 1% 86.8372 245.7077 517.8086 911.2463 1249.2064 1422.1144
82 19 86.8372 245.7077 517.8086 911.2463 1249.2064 1422.1144
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0 (x.t)

w(x.l)

—————— Neutral axis

uix.t)

Figure 1. Beam element showing continuous displacements and coordinate system.

—————— Ncutral axis
q 4

Figure 2. Beam element showing external discrete degrees of freedom.
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Fisure 3. Uniform cantilevered bheam and representative h- and p-version finite-element models.
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Figure 4. Percent error versus number of degrees of freedom for first bending frequency of uniform beam.
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Figure 3. Percent error versus nnmber of degrees of freedowm for second bending frequency of uniform heam.
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Figure 6. Percent error versus number of degrees of freedom for third bending frequency of uniformm beam.
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Fionre T,

Figure 8. Percent error versus munber of degrees of freedom for first torsional frequency of uniform beam.
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Percent error versus number of degrees of freedom for fourth bending frequency of uniform bearn.
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Ficnre 9. Percent error versus munber of degrees of freedom for first axial frequency of minform beam,
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Figure 10. Tapered cantilevered beam and representative h- and p-version finite-element models.
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Figure 12. Percent error versus number of degrees of freedom for second bending frequency of tapered beam.
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Fignre 11. Percent error versus number of degrees of freedom for first bending frequency of tapered beam.
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Figure 13. Percent error versus number of degrees of freedom for third bending frequency of tapered bean.
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Figure 14. Percent error versus number of degrees of freedom for fourth bending frequency of tapered beam.
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Figure 15. Percent error versus number of degrees of freedom for first torsional frequency of tapered beam.
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Figure 16. Percent error versus number of degrees of freedom for first axial frequency of tapered beam.
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